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FOREWORD

This report was prepared by General Atomic Division, General Dynamics
Corporation, San Diego, California, under Contract AF29(601)-7035. The research
was funded by DASA under Program Element 6.16.46.01D, Project 5710, Subtask
07.002, and by ARPA Order 313, Program Element 6.25.03.01.R.

Inclusive dates of research were 22 July 1965 to 21 July 1966. The report
was submitted 28 April 1967 by the AFWL Project Officer, Maj George Spillman
(WLRT). The contractor's report number is GA-7370.

This final report on Nuclear Explosion Interaction Studies is being

The volume titles are as follows: Volume I, Methods
for Analysis of Radiative Transfer; Volume II, Methods for Analysis of Thermal
Phenomena; Volume III, Miscellaneous Code Development; and Volume IV, Phenome-
nology Studies (classified SECRET/RESTRICTED DATA).

published in four volumes.

The first three volumes are devoted, respectively, to theoretical studies
and computer code development in radiative transfer, thermal phenomena, and
miscellanecus efforts relaced to various other aspects of the work. The fourth
volume, which is classified, contains the results of applications of these
techniques, and of those pre:viocusly developed, to the study of fireball growth
and the interaction cf laser radiation with materials.

The NEIS program is long-range, and most of the projects described in this
report .re in an incomplete state of development. This is due in part to the
nature of the existing computer programs themselves, which continue in a state

of development as long as they are in use, and in part to the time scale involved

in bringing new programs to a state of capability for solving real problems.

General Atomic staff personnel contributing to the research include
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¢ ABSTRACT

Various analytic and numerical methods are described for the
phenomena which take place when a high-energy-density source interacts
with matter, The interaction usually begins with the transient heating of
a solid surface for which analytical methods of study have been developed
(Section I). The second phase of the interaction process is vaporization.
Recent developments in numerical techniques for simulating vaporization
are discussed in the context of the two-dimensional interaction code
HECTIC (Section II}. The third phase normally involves the nonsteady
flow of ionized vapor, for which equations of state are required. A gen-
eral numerical technique (EIONX) for evaluating internal energy and pres-
sure for a given temperature and density has been developeci and incorpo-
rated in the SPUTTER program (Section III). For computer programs,
e.g., HECTIC, which use internal energy and density as the independent
variables, numerical methods were developed to invert the equations of
state generated by EIONX (Section IV), For relatively low energy-density
sources, the vapor may be in a molecular phase for a significant part of
the interaction process, thus requiring the development of special tech-
niques for evaluating the molecular dissociation energy as a function of
temperature and density., The calculations for one particular material--

carbon--are discussed in detail (Section V).

(Distribution Limitation Statement No. 2)
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SECTION I

HEATING OF A SLAB BY A TIME-DEPENDENT SOURCE

1.1. INTRODUCTION

Analytic solutions of the heat conduction equation may often be used to
advantage in the studyof interaction phenomena (Ref.1). Althoughthe analytic
treatment must in generzl neglect both temperature and position dependence
of the thermal parame.ers of the material medium, it is at least not subject
to the limitations of accuracy and stability which are encountered in the use
of difference equations. The analytic method therefore serves both as a
useful guide to the improvemenut of difference-equation methods and as a
convenient check on the validity of particular computational results obtaired

by use of difference techniques,

1.2. SPECIFICATION OF THE HEAT CONDUCTION PROBLEM

In a typical interaction problem, a semi-infinite region x > 0 is
occupied by a solid material which is heated by radiation incident upon its
furface, Ths intensity of this source radiation will be denoted by fi(t)
ergs/cmz/sec. a defined function of time t >0. The present discussion is
concerned with the general problem of a source intensity which varies con-
tinuously with time. This entire class of problem is definitively treated by
Carslaw and Jaeger (Ref. 2).

The absolute temperature of the material medium at position x,
time t will be denoted by T(x,t). The material parameters (assumed con-

stant) are given by:

C
p

Specific heat,

Density,

-]
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k = Thermal conductivity,
= -é‘-;, Thermal diffusivity,
TB = Absolute temperature of fusion or sublimation,
Ky = Mass absorption coefficient for source radiation,
a = PKL. Volumetric absorption coefficient for source radiation,
R = Surface reflectivity for source radiation,
€ = Total emissivity of surface,

In addition, T 0 denotes the initial absolute temperature of the
material, T A denotes the effective blackbody temperature of the external
region (x <0), and o is the Stefan-Boltzmann constant.

The surface fluxes associated with source radiation, thermal radia-

tion, and conduction, are,respectively,

?5(0,t) = (1- RIE(t) | )
4 4
¢.(0,t) = -e0 [T(o,t) - T, ] (2)
aT
“cl0:8) = -k glx=0 (3)

The general boundary condition for the heat conduction problem is
- %(0,t) + 9.(0,1) = 90, t) (4)

Within the solid material, account will be taken of the conductive and
source fluxes only, since the measured values of conductivity presumably
include a first order contribution from radiative diffusion, and the high
order contributions are presumably not more significant than the tempera-
ture dependence of the conductivity which is being ignored. If the atten-
uation of the source flux within the material can be described by a single

coeificient 3, as in the case of a laser source,

Fglx,t) = (1 - R)E(t) e 2% (5)
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The heat conduction equation is then

99 99
C S oT _ v
3= ' Ix 1€ ot~ ° (6)
or 2 ;
0T 1 8T a - -ax
7 "o a2t - (-RITE(M)e (")
ox L
The initial condition
T(x, 0) ='I‘0 2 x>0 (8)

then completes the specification of the problem.

1.3. EXAMPLE: HEATING OF A METALLIC SLAB BY A PULSED
SOURCE TS e

In a medium with relatively h1gh éonductivity and low transparency
for source radiation, the conductive flux will dominate not only the thermal
radiative flux at the surface but also the source flux inside the medium;
i.e., at times of interest the characteristic depth of the conductive front
m will be large compared with the characteristic depth of penetration
of the source radiation 1/a. The equation to be solved is then the homo-

geneous heat transfer equation

2

¢ T 10T i
—-35¢°9" x>0, t>0 (9
ox

with boundary condition

aT

™ ax|x= (10)

0:(1-R).'E(t), t>0

and initial condition (8).
We note first that, with the aid of Duhamel's Theorem, this problem
can be reduced to a simpler problem in which the boundary condition is

that the flux be a constant. That is, let
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t
9
T, t) = 57 f Ox,t - t,t0) dt,
0

Then G(x,t,to) is a solution of the equation

with

and

Then, from Eq. (12), fn(z) must be a solution of the equation

or

-k 3x | x=0 = (1l - R) E(to)

0 (x, O,to) = T0

Assume a solution of form

6=cot:“/2 %( x +T,
yéot

a%s df

—+2z— =2nf=0

dzZ dz

£ (z) = i™ erfc(z)

where the functions i erfc(z) satisfy the relations

it erfc(z)

i-1 erfc(z)
2n i erfc(z)

i® erfc (0)

f in"1 erfc(s) ds

i erfc(z) - 22i™"

ik e
2"p (§ +1)
4

- erfc(z)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

‘w
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The functions i0 erfc and il erfc are written as erfc and ierfc, respectively.

On imposing the condition (13), one notes first thatn = 1, and also that

C0 .
-k-——fl '(0) = (1 - R? E(to) (22)

40

or, using Egs. (18) and (21) to show that fi(O) z -1,

Blxt,t ) = —20-R) E(t,) ¢1/2 ierfc( ")& T, (23)
JKkCp 4ot

From Duhamel's Theorem, Eq. (11), an: using also Eqs. (20) and (19),

\/Eap Vaot-t

T(x,t) = M 2 f E(t Y(t -t )1/2 iexfc .[——’-‘-———)]dto+T0
0

t E(t )
. . ierfc (

X
e
JkCp fo e-tg Vadt-t)

X
erfc

dt +T
Vaa(t - t \/4a(t -t ) ]

1R ﬁ:(to) - [xz/4a(t-t0)l i
= j e dty + T, (24)
,/rka 0 ,/t - t0
A pulse shape ﬁ:(t) which has been found useful is
E.J(t) = M tm 3 D<ctet
2t m+1l 1
1
5 i +)_._ (2t -t) Tt <t <2t
+1 1 1 1
Zt
1
=0 t>2t, (25)
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That is, E rises as the mth power of the time to a maximum at time tl'
-

then decreases in a symmetric manner to zero at time Ztl' The width of

the pulse at half maximum, A, is given by

v
A=2(1 -2 '”m) t
The constant E is the time integral of E over the entire pulse, in ergs/cng
An explicit solution is readily derived for the time interval
0O<tc tl’ the rising portion of the pulse. In general, for
E(t) = At™ 2 (26)
where n is an integer not less than -1,
: - +
T(x,t) = T, + A(1-R) (ke C) ”Zp(in + 1)(4t) Inth n Viite & (27) v
Vaot
The surface temperature is given by g
T(0,t) = T + A(l - R)(,rkpC)-* B(4n + 1, §einH (28)

where B(p,q) = '(p) q)/ '(p + q) is the beta function.

Returning to the pulse shape, Eq. (25), the surface temperature may
be obtained by substituting Eq, (Z5) into Eq. (24), setting x = 0, and evalu-

ating the integrals; for m = 4,

% 9/

T(0,t) = T + (vkpC)” * (1 - R) At 2 1) (29)

where s =t/t

—

E(o) (s -af% d
0

o

—a

I(s) =

/

(s - 1)>/2 (246% - 486 + 59) H(s-1)

=315 " 105

256 9/2 32
3

256

- 5ts (e-2)”/

2 H(s-2) (30)

- - e ot s
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H(x) =0, x <0

=1, x =
and
A _ (m+1)E _ 5E
- 2tm+l 'Zts
1 1

The dimensionless quantities

E(s)

4
At1

3
Is) =-{7kzC) 578 [T(O,t)-To ]and
(1 - R)At,

are plotted as functions of s in Fig, 1. The temperature rises as the 9/2
power of the time fromt =0to t = t:1 and reaches a maximum at approx-
imately 1,10 tl' This result has been closely reproduced by difference

eJjuation solutions to the heat conduction equation,

1.4. THE RADIATION BOUNDARY CONDITION

If the temperature of the surface of the target becomes sufficiently
high before sublimation or melting occurs, the blackbody radiation from the
surface can no longer be neglected. In the transient regin;xe this radiation
condition can become of major importance for the case of refractory non-
metal targets (for a good conductor the conductive flux would still over~
whelmingly predominate) when the total energy delivered by the source is
near the ablation threshold. |

We consider again the homogeneous problem (Eq. (9)) in which the
source deposition is assumed to occur only at the surface. The boundary
condition is, from Eq. (4), .

aT

-k 3% | x=0 + €0 [’I’(Q,t:)4 - TA4]= (1 - R) E'J(t) (31)




e i A Al W i

AFWL-TR-66-108, Vol II

0.9

0.4

Figure 1. Relative Temperature and Source Intensity versus Time

(Dimensionless Plot)
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Since this condition is nonlinear in T, some artifice must be employed in
order to obtain a solution, Two will be considered:

1, Implicit solution,

2, Linearization,
Lirearization is appropriate when the total change of surface temperature
during the time of interest is relatively small, However, for refractory
materials, which can be heated over a large temperature range, this
assumption is not always particularly good. An implicit method which
solves the problem with the exact nonlinear boundary condition will there-
fore be described first, The method is essentially that of Jaeger (Ref. 3).

Assume that T(0,t), T(O,t)4, and E(t) may all be exparded in powers

of the variable z = t*;

T(0,t) = 2 —'-‘; ? =T i(2) (32)
n:
4 4 o 8
T(0,t)° = Z = ¢ _Tog(z) , (33)
n=0.
Et) = z n—“ (/2 (34)

The application of the initial condition (8) then provides at once

£ =1 and g =1 (35)

The first step in the solution is the derxvation of the relatmnl be-

tween the g, and the f 0 Since g(z) = f(z) 3

f(z)g'(z) - 4f'(z)g(z) = 0 (36)
Differentiating Eq, (36) n times, setting z = 0, and noting that f(r)(O) = f
( )(0) = g, one obtains

a
2 )( grz r+1° 4":r+1gn-r):=o (37)

9
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Equations (35) and {37) may readily be solved explicitly for the g,

]
-

etc,

(38)

The second step is the solution of the heat conduction equation (9) for

the temperature Tn(x, t) when the surface value is a prescribed function of
time: Tn(o,t) = Vntnlz, where Vn = Tofn/nl + The Laplace transform of

Eq. (9) may be written

2
€3 - qZS =0, x >0
2
dx
where o
s = [ T (x,t) P gt
0 n
and
2
q =p/a

(39)

(40)

(41)

The boundary condition at x = 0 is that S shall be the transform of Vntnlz,

namely,
§(0) = V_T(1 +n/2) p'l'“/z

The solution of Eq, (39) which satisfies this condition and is regular at

infinity is
S(x) = 5(0) e~

The inverse transformation then yields the desired resuit for the

temperature:

T (%) =V _T(1 4 2/2) (4t)“/ : inerfc<.._.x__>
Jaat

10

(42)

(43)

(44)
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Linear superposition of the contributions given by Eq. (44) for each
n, as in Eq. (32), then yields the complete solution T(x,t):

§ 5 n/2 x
T(x,t) = Ty |1+ D S0(1 +n/2)4t)" © 1"ertc (45}
n=1 vaot

It remains to determine the coefficients f using the boundary condition

(31). The conductive flux at the surface is, from Eqgs. (18), (21), and (45),

aT "1 +n/2) £ t(n-l)/Z

[ -]
o=z z
ik x| x=0 he TO & n! r(1/2 +n/2) 'n

3 n
0. TCl=4=—
. -1/2 § (z z) n/2
=ka T, Lo+ D)1 +0/2) fnt (46)

Substituting Eqs. (46), (33), and (34) into Eq. (31), one finds for n = 0

-1/2 ., V& 4 4, _
ko Ty2 f) + €@ (Ty" - T,") = (1-R)An (47)

and forn > 0 (3 n)
L(s+3
ka'”z'r 2 2/ +eoT t =(1-R).A.hn

0 (n+1) Pl +n/2) In+l o &
or forn= 2 i3 I‘(l +%) &
ka T fn =(1 - R)Ahn_l - €0'T° 8.1 (48)

0 l,n
B (z +3)
The solution, Eq. (45), is thus completely specified. With the coeffi-

cients hn given, one finds first f. from Eq. (47), then g, from Eq. (38), fz

1
from Eq. (48), g, from Eq. (38), etc.
An alternative approach to the above is to specify a linearized radia-

tion boundary condition in place of Eq. (31):

aT _1-R
- px|lx=0 th [T(°-t) -T,| ==—E(t) (49)
where in some sense O | /A
WT -Ty) ~ = (T -T,7) (50)

11
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is an adequate approximation for the problem at hand. For problems in
which | T(0,t) - T A]/'r A << latall times of interest, a good fit is obtained
by defining .

3
h-h1 -450'TA /k (51)‘

Equation (51) underestimates the radiative cooling rate for T(0,t) > T A’ A
second alternative is

h=h, = (T

4

4
B ~Tp M(T5-T,) (52)

which is correct for T(0,t) = TA and T(0,t) = TB' but overestimates the
cooling rate at all intermediate temperatures, A third alternative, inter-
mediate between h1 and hz in value, is defined by

€0

hh3 *

3 2 2 3
S(TB-TA) +ZTA(TB-TA) +4TA (TB-TA)+4TA](53) ¢

This yields the correct total radiated energy between T = T A and T = TB'
if T(0,t) is a linear function of the time; in this sense it gives an approxi-
mately correct mean cooling rate over this interval,

With the initial condition

= T(x,0) =T (54)

TO A

and the boundary condition (49), the general solution is

2\ 2
2 R)f “hY gy f f:(t-("—+-%)-)e-z dz (55) |
\/" Xy 40z

,/40:
(see Ref, 2, p. 74). Other formulas involving the linearized radiation

boundary condition are presented in the following section.

1.5. INTERNAL SOURCE DEPOSITION
We consider next the case in which the depth of penetration of the

source radiation is not negligible; i.e., at times of interest /at is not large

compared with 1/a. The source flux must then appear in the differential

12 | L
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equation rather than in the boundary cordition. For simplicity, we adopt
the initial conciition (54) and define ¢(x,t) = T(x,t) - To. Then the equation

to be solved is (7), or in the present notation,

2
90 97 ao -axX
a_t'aa_;i =(1-RI= Et)e™™, x>0 (56)

with the linearized radiation boundary condition
—=h8, x=0 (57)

and initial condition
6ix,0) =0 (58)

The general solution of this problem may be written in the form

t L ]
-ax
0(x,t) = (1 - R)%’:—g f dtoE(to) r dxo e 0 G(x.tlxo.to) (59)
0 0

‘vhere G(x,t lxo. to) is the temperature rise at x,t due to a unit source at
xo,to < t, Sevaral forms of this Green's function may be written, the
choice being one of computational convenience. We introduce first the

infinite medium heat conduction kernel

® .p2a(t-t )
U(x,t]|x t)--l-‘re ocosﬁ(x-x)dﬁ (60a)
4 I 0°0 " = JO (]
2
(x - x.)
_ 1/2 0
= [4 ra(t - to)] exp |- 4—a(t v to) (60b)

which satisfies the equation

2

ou 9

5—t-- -—2q=0, -0 ¢ X < %, t>1:0
ox

with initial condition

U(x, to Xq to) =06(x - xo)

13
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and

U—~0Oas |x| == andast =+ w

This kernel is itself the Green's function for the infinite medium. For our -
semi-infinite medium, the Green's function may be found by the method of

images (Ref. 4):

Glx, t] x5t ) = Ulx,t Ixo.t ) + Ulx,t] - xt )

h(xo+y)
- 2h f Ulx.t |y, t) e dy (61)

cos B(x - xo) + cos B(x + xo)

2
o  -f a(t-t)
=}-de0 0[
™0

o =h{y-x_)
- 2h f e o cos B (x + y) dy] (62)

*o

-1/2 x - xp)’ [ G+ xo) 2l
[4 ra(t - to)] lexp T 4ot - to) tOP | Zalt - to)

hx %0
- Zhe °f dy exp [-hy 4“(‘; "to’” (63)

*o
[ (x + xo)z]
texP |“galt - to)

(x - xo)z ]

[4xa(t - to)] -l/ZIpr [' 4a(t - to).

 Ix4x + 2ha(t -t )
- b exp [x + x) + nla(t -‘to)]erfc L. .2 ](64) P

ﬁa(t-t)

Equation (59) has the form of a Laplace convolution, so that if the
Laplace transforms of 6(t), fi(t), and G(t-to) are d'enoted.,relpectively. by
o(p), E (p), and G(p), then

i 00 -ax .
Boep) = (1- REEEE [ T e ? ax, (65 :
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The transform of the Green's function is

-{x+x
_ 1 -Ix-xolq -(x+xo)q he (x 0)q
P ke
Glp) = 5= (e +e ) - ST} (66)
where qz = p/a as before. Therefore,
™ -ax, -ax _ -gx -gx
[ dxo K 0 Glp) = pe 5 aaq e - 7he (67)
0 ) p -a ap aq lq +(h+a)q+ha]
and the general result is thus
cH* -gx -gx
= (1. a — pt | _ae _ he ]

Although this expression involves only a single quadrature, .t is not neces-
sarily easier to evaluate than (59), even whern h = 0. Numezical methods

based upon either form are certainly possible and are worth investigating.

1. 6. CONCLUSIONS

The analytic approach offers some significant advantages over purely

numerical methods of solving difference equations representing the fiow of
heat., It is not subject to numerical 'instability difficulties or to truncation
error, and simple problems may be eolved with far less computational
effort than the numerical approach demands. Furthermore, many features
of the solution, such as the existence and location of maxima and minima,
the leading terms of power series expansions of the solution, and perturba-
tion coefficients which describe the effects of small changes in the param-
eters of the problem, may be derived directly, Many of these fe.atures can
be obtained only with considerable difficulty from a numerical treatment.
On the other hand, it must be recognized that the numerical approach
is potentially far more powerful and versatile. Temperature-dependent
vonductivity, the radiation boundaryv condition, complex time and space
dependence of the problem cha.rac'teristics, and two- or three-dimensional

geometry can all be handled within the scope of a practicable calculation

15
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effort. One can, in effect, solve the rcal problem with which one is
presented, rather than some idealized problem which bears an imnperfectly
known relation to the real problem,

The use of analytic methods within the framework of a baaically
numerical approach remains to be considered. For example, in a two- or
three-dimensional calculation it might be preferable to use a numerical
approach based upon the integral formulation (Eq. (59)) rather than the
difference equations. Even where the differerce equations are entirely
adequate, it may require less computer time to evaluate an analytic formula
for those cases in which one is available, Purely analytic and purely
numerical methods are merely the extrernes of a '"spectrum' of available
approaches; for the rajority of problems the most practical techniques

probably involve some combination of the two,
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v
SECTION II
‘ VAPORIZATIO E :
| .
2.1. INTRODUCTION
In a two-dimensional geometry the phenomena of vaporization and
heat condu:tion are considerably more complex than in one dimension, and
the simplest approaches to the calculations, employing explicit differencing
of the partial differential equations involved, are even less feasible than in :
5 the one-dimensional case. The approach taken in the effort to develop a
two-dimensional Eulerian interaction code has therefore been to concen-
. trate on the analytic description of the physical processes involved in more
i or less typical applications, rather than on the most general possible solu-
;
{ tion of the equations. For this reason the approach is essentially
one~-dimensional. 1
i
2.2, VAPORIZATION
i
§ The following equations are employed in the description of vaporiza-
; tion at the surface:
§ Continuity
}
- m=pu (69)
m= pc, | (70)
Equation of motion
P +dc =P -+ thu_ (71)
17
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Energy conservation

. 2., 2 [
m(f-I1 + < M s Ho - u, /2) = Py (72)
Vapor equation of state :
3 - 1
P, =(y-1)H p (73)

1

1
Hugoniot pressure in solid( )

az(l - 8/R)
Po = > (74)
p - Al - plp)

These six equations involve seven unknown ¢uantities:

m Mass ablation rate, -
p o Density on solid side of solid-vapor interface,
P 1 Density on vapor side of solid~-vapor interface,
c Magnitude of vapor velocity at solid-vapor interface,
1 : ;
relative to the interface,
u_ Magnitude of ablation velocity, i.e., velocity of solid
— mewess . oo-relative to the interface, . : =t '
Po Pressu~e on solid side of solid-vapor interface,
P1 Pressure on vapor side of solid-vapor interface.

The equations also involve seven material parameters, assumed to

be known:
H C Specific internal energy of solid at the vaporization
temperature,
Hv Specific internal energy of vaporization, : A X
" Normal solid density,

18
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C

vy Polytropic index ot vapor,

H'!. Specific random internal energy of vapor at the interface,

o, 8 Constants in empirical low-pressure state =quation for
solids:

P= aup + Bupz, where up is the particle velocity (Ref. 1).

The specific enthalpies of vapor and solid at the interface are defined,

respectively, by

H1 =HC +HV + pll P (75)

H0 = HC + Pﬁolp0 . : (76)

Finally, the net energy flux at the interface available for producing vapor,

‘pSV' is assumed known. In effect,

¢Sv =E - ‘pc (77)

where E is the total incident flux on the interface and ch is the loss due to
heat conduction into the intericr of the solid. The latter term is treated in
detail in Section 2.3. All quantities defined above are non-negative; vector
quantities are represented by their magnitudes, since relative orientations
are determined by the model assumed. The evaluation of the solid pressure
on the Hugoniot replaces the more complete equations of state and motion
for the solid, which are not needed for the analysis of many interaction
processes. This remains, however, a limitation of the model which may
require further developmental effort in the future. .

Since the number of equations is one less than the number of un-
knowns, an additional condition is necessary. The velocity <, of the vapor

at the interface, relative to the interface, must be such that

u sc, = ,/y(y-l)H:: (78)
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That is, it cannot be less than the constant density limit, in which Pp= P
nor greater than the Chapman-Jougvet limit, namely, the local sound
speed, Lor which the entropy is a maximum. If o2 lies between these

limits, the pressure P_ on the vapor side of the interface is obtainable .

from the conditions in :he external vapor field, for example, by integration
back from an extérior boundary condition. In any of these three cases, the
additional condition is determined by the hydrodynamic coupling of the
vapor at the interface to that beyond the interface. The constant density
limit should theoretically be instead a constant pressure limit; i.e., with
a more detailed state equation treatment in both vapor and sclid, the lower
limit of ) wuuld appear naturally from the formulation as a eondition in-
volving constant pressure across the interface rather than constant den-
sity. In the absence of such a more detailed and algebraically involved

treatment, the constant density assumption is a reasonable and convenient

artifice. =

Case 1. Assume first that is sufficiently small that

@,

SV
cl2 = NY - l)H'C, the Chapman-Jouguet case. Then using Eqs. (69), (70),
(71), (73), (75), and (76), Eq. (72) may be written in the form

: 2
dm[Hy + ¢” (1= /e )2 + (v - 1BL (1 - fe))]= 0 (79)

or, since ablation velocity, particularly in this case, must be émall com=:

pared with the sound speea in the vapor, ua/c1 << 1 and

m & "’sv/ [HV +c12/2 + (v - 1)1—1;:1 (80)

The remaining unknowns are then obtained by solving Eq. (69) for u,
Eq. (70) for Pl, Eq. (73) for Pl’ Eq. (71) for Po’ and Eq. (74) for Po."
The value of P1 obtained by this procedure is denoted by PT, or "P-test',

Case 2. Now assume, in contrast to Case 1, that the relative velocity

of the interface and the vapor at the interface is less than the sound speed. =

20
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Then the interface remains within the range of influence of the external
vapor, and the pressure PV at the interface may be found as follows. De-

note the pressure in the zone adjacent to the interface by PK' the pressure

[
in the next zone by PK+1' and the widths of the zones by AK, AK+1>' Then
Pv = PK if PK < PK+1 (81)
P_-P
K K-1 g
P, =P, + 4, —————— if P, >P (82)
! VIR KA AL K ~ "K+l
and the true interface pressure is taken to be
: P1 = max (PT,PV) , (83)
| . I P1 = PT' i.e,, if PT > PV' the Case 1 calculatian aiready p‘erform‘ed‘
i is confirmed. Otherwise, it is dropped and the Case 2 calculation is sub-
i : : ; .
| stituted as follows. Equation (79) may be rewritten, using Eqs. (70) and
' c
{ (73) as
§ ( : ' 2 P
Y - 1)H
l e e a1 R R S R th =
| 2[ B 'p] m +[Hv+(1'-1)HC 3 = ‘pSV _(84)
| 1 o o :
i
which is a cubic of the form ’
Afh + B = ®
o - ey
Let
2 2
a=Aa /fPsv
b = ¢ /2B
: SA =b( V1 + 4Aa/27B + 1)

Sg = bl V1 +4Aa/27B - 1)

21
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The oi'ly real rout, in physically valid cases, is then

. o 13 1/3 ;
m-SA -sB 7 (85)

¥ B/Aa =B ¢SVZ /A3 is small, specifically less than 0,01, then SA and SB

are nearly equal and the form

2
. %y Bésy
m=—= (1-—= (86)
A

is used.

The procedure is as follows: Given Pl' evaluate P by Eq. (73) and
provisionally assign the value Pgto P . Then eva'uate m by Eq. (85) or
(86), u by Eq. (69), <, by Eq. (70), and P0 by Eq. (71). If Pl sP0 or
equivalently P1 =(7 - I)HE: Po. the calculation is then complete, If how-
ever, P1 > (Y - l)H'C Po, first try re-evaluating Po from Eq. (74) to
determine if the solid has been shocked to a sufficiently high density to
pass the test, If this is insufficient, the Case 2 calculation is dropped and

the Case 3 calculation is substituted.,

Case 3. This is the constant density case; the solution is given by .
setting P0 £ Pl' solving Eq. (74) for Po, and setting PL= Py Since by
Eq. (71) c, =u, Eq. (72) reduces to

@
th = = | (87)
= .

' E .
m =g (88)

since conductive steady state is quickly achieved under these conditions.

Finally, u is determined by Eq. (69).

22
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The HECTIC code at the present time employs a still simpler pro-
, )
cedure in which P, is identified with P, under all conditions so that Eq,
(74) is not used at all, The procedure described above ‘merely indicates

.

refinements which can be readily made without modifying the vapor state

equation or introducing a complete solid state equation into the formulation,

2.3. CONDUCTION

The basic equation for the description of heat flow in the solid is

& 22 k826+ (8
Py ot = 569 a(s, t) (89)

where q(s,t) represents the net source of heat at a fixed position s, It is

convenient to transform this equation to a moving coordinate x such that

m
. s =x+ T)—t : (90)
o
i.e., x represents the depth in the solid relative to the moving solid-vapor

interface. The transformed equation is then

c. 28 ka—z'g we. o2 =0 1
| s 8x2+mvax+q' * (91)

The additional term r'nCv 86/ 8x, which is negative, réprésents an effec-

tive reduction of the heating rate at a point x as this point moves down the

temperature gradient. The term q is defined by

qL= é(xnt) =

Py Ox) [ (92) -

where Q = - (aﬁ:/ax) is the local heating rate due to the external source !
and the second term accounts for the energy removal by vaporization at E
g

the interface, which is to be computed.

The physical model is that of an initially cold solid, which is heated

by the incident flux until the surface temperature reaches HC/ CV' at which

time vaporization begins. On the assumption that at a time t the depth of

23
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the conductive front yat (where a = k/C P, is the thermal diﬁuswlty) is
large compared with the characteristic depth of the solid in wh1ch the
source E is deposited, the temperatu;'e is given by the general formula (Ref. 2)

(cf. Eq. (24) in Section 1):

-%/2 E(0, t') - /4a(t t')
8(x,t) = (7kCy £ )" f at' (93)
o JVta=t'

If, as is usually the case, the deposition depth can be neglected by the time
the surface begins to vaporize, then this time tc can be determined from
Eq. (93):

t

C
&0,t ) = HC/CV = (chvpo)'llz f E(0.t) 4¢ (94)
t -t
c

At time tc the temperature distribution near the surface, given by Eq, (93),

may be expanded in powers of-x:

H. [ C.E(0,t)

C \' c 2

T\ x + 0(x )] (95)
Cy l L

0(x, tc) =

which implies that the conductive flux at the surface

90
‘pc = -k ax 0 : (96)

is equal to the source flux ]:S(O,tc). This is equivalent to stating that there
is (for t Stc) no surface singularity to make the energy flux discontinuous.
It is also the case that the distribution of temperature defined by Eq. (93)
is roughly exponential in x, and that this general shape holds at later times
as well. The approximation ) -

2 C x/z(t) ST B i
6(x,t) = 5 t=t, x=0 (97)

V

24
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where, according to Eq. (95),

kH
a(t ) = s (98)

Cv E(O,tc)

is therefore not unreasonable, particularly in view of the fact that the de-

tailed spatial distribution of temperature in the solid is not of interést;
The specification of the function z(t) may be made by subdtituting

Eq, (97) into the two first-derivative terms of Eq. (91) and integrating

over x from -0 to «;

dz . s L
P Ho g = 0.(%) - ¢ (-0)) -hH, +E - o (99)
2 Since the conductive flux vanishes at infinity, and also af =0, which is be-
yond the interface, the result is
dz l e °
ke poHc [E(0,t) -~ mH] (100)

where H, the total specific energy for heating and vaporization, is given

{ by

hH = g +hH_ amlH_ +H, +¢,%/2 +(y-DHL]  (100)

1 (which follows from Eq, (79) with ua/ < << 1). The differential equation
(100), with initial condition (98) therefore describes the advance of the

{ conductive front in a straighitforward manner, and provides a simple ap-
proximation to the true solutioa of the heat conduction equation. - The ex-
plicit difference representation of Eq. (100) is solved at the conclusion of

each cycle, following the vaporization procedﬁre described above, The

3 conductive flux, Eq. (96), is then calculated as
§ kHC

and the quantity ¢SV' defined by Eq. (77), is then updated.
25
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2.4. APPENDIX: GLOSSARY AND USAGE OF HECTIC VARIABLES

Tables I and II list those variable names in common storage which
are currently in use,and their relative locations, definitions, and defined
values, if any. All units are in the cgs system, except for temperature,
which has units of electron volts. A ''specific'' quantity always means |
""]per unit mass,' i.e., "per gram.' Variable names followed by an

asterisk are input quantities. !

.

Various quantities associated with boiling are stored in the SOLID
array. For each value of the radial cell index I, there may be up to 20
such quantities. Since the total array size is 400, a maximum of 20
""boiling'' cells is permitted. With the assumption that J = 20 (I - 1) +1, ‘
the quantities SOLID (J+N) are defined in Table II for various values of N.

Table Il is a cross-referencing of all the variable names and the
subroutines which use common storage. As ''X'" in the table indicates B,
that the variable listed on that row is used at least once by the subroutine

listed in that column.

v
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Table 1

STORAGE LOCATIONS AND DEF INITIONS OF VARIABLES
USED IN HECTIC

Variable name Loc Definition
PRQB 1 Problem identification number
" CYCLE 2 Cycle number
DT 3 Time step A t™
 PRINTS* 4 Cycle frequen:y for short prints

PRINTL* 5 Cycle frequency ‘or long prints

DUMPT 7% 6 Cycle frng-ency for tape dumps

CSTQP* 7 Maximum allowed cycle number

PI e 3. 1415927

SCYCLE * 17 Start cycle number; if positive will
search dump tape; if zero will gener-
ate mesh and start from time zero

SPROB * 11 Problem identification number; used to
check against PR@®B read from
restart dump tape

ETH 13 Total energy in system

FFA * 14 Maxiinum allowed increase in At per
cycle (2.) :

FFB * 15 Minimum allowed At (10" 10gec)

XMAX 18 Largest value of the radial coordinate

DNN 23 Used in EDIT to calculate th: energy
check number ECK

DMIN * 24 Maximum allowed value of ECK -

DTNA 26 Time step on previouas cycle at?-1

NC 30 Integer value of cycle number

NPC 31 Mumber of cycles between short prints

IMAX 33 * ‘Number of zones in the radial direction

IMAXA 34 ~ IMAX +1

JMAX 35 Number of ones in the axial direction

27
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Variable name

JMAXA
KMAX
KMAXA
Il

I2

N1 *

N2 *

N3 *

N4 *

N7

NRM

TRAD
SN *

Table I .
STORAGE LOCATIONS AND DEFINITIONS OF VARIABLES 3
USED IN HECTIC (Continuved) 2 A
Loc Definition
36 JMAX +1
37 (IMAX) (JMAX) +1
38 KMAX +1
47 Active grid counter in the radial direc-
tion +2
48 Active grid counter in the axial direc-
tion +2
51 Input to SETUP; number of Ax '8 or
Ay 1'8 ¥
52 Input to SETUP; number of Ax,'s or
Ayp's .
53 Input to SETUP; number ofA:r.3's or
Ay 3'5
54 Input to SETUP; number of Ax4's or
Ay ,'s
57 Dump tape number
62 Maximum permitted number of radiation
cycles per hydrocycle; currently
inoperative (bypassed when SN<O)
63 Radiation time step (currently not used)
65 Switch in PH! to cause backward integra-
tion in time to co 'rect the integration
of internal energy (this occurs -when
SN=0and UT >0j (-1.)
76 Erergy check criterion, At the short-

ECK

prin\ cycle frequency, the relative

error between ETH and the sum over

cells of internal and kinetic energy is _ .
formed and stored in WSA. The differ-
ence between WSA and its value at the
sast short print cycle, divided by

NPC, is the quantity ECK

28
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Table I

STORAGE LOCATIONS AND DEFINIT' NS OF VARIABLES
USED IN HECTIC (Cor .aued)

Variable name Loc
84

S1 90
HVB * 100
HCB * 101
SVS * 103
ATQM * 104
CV * 105
GV * 106
ANN * 110
EZERQ * 111
PW * 112
CAPS * 113
HINU * 114
COE * 115
SCR 116
ISR * 117
SCDR 118
AHN 119
DTH 129

* Definition

Total time to cycle N

Error flag. Its value indicates the sub-
routine in which the error occurred

Heat of vaporization (specific)

Heat required to bring solid to boiling
point (specific)

Specific volume of solid
Atomic weight of material
Specific heat of solid
Y of vapor at vaporization temperature
Exponent for l2.ser pulse function
Total laser pulse energy per unit area

Pulse width at half-maximum for laser
source

Laser absorption coefficient in solid
material

Laser photon energy (ev)

Coefficient used in calculation of laser
absorption coeff, at temperature
helow 2 ev,

Incident laser flux; derivative of the laser
pulse function

Index of largest radial zone irrﬁdiated
by source

Duration of source
8.62 x 101° (AT@M * HNU)?

Shortest cell transit time in the mesh,
i, e, the minimum value of Ax/u o

Aylv ‘
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Table I

STORAGE LOCATIONS AND DEFINITIONS OF VARIABLES
USED IN HECTIC (Continued)

Variable name

IH
-JH
DTC

IC
JC
RFT *

CDUT *
HCP *

HH
co
J5%*

SVMAX *

FRCDTC*

VAPE
RADE

CNDE

SCRE
v
JV

Loc

121
122
123

124
125
126

127
128

129
130
135

138

139

140
141

142

143
144
145

Definition

I value of cell determining DTH
J value of cell determining DTH

At determined by Courant stability
condition

I value of cell determining DTC
J value of cell determining DTC

Reflectivity of target surface to laser
radiation

Conductivity of target material

Energy of gas at zero temperature
- (H +H )

c v :
Enthalpy of gas at the boiling point
Sound speed in gas at the boiling point

J value of vapor zones adjacent to the
solid-vapor interface

Maximum specific volume allowed at
free surface; no mass flows to the
outer cells if the specific volume
exceeds SVMAX (10 14)

Fraction of DTC used to determine
At (0, 5)

Total internal and kinetic energy in vapor

Total reflected source encrgy; this
energy is lost from the system

Total energy conducted to interior of
target :

Total incident energy from source
I value of cell which determined DTVF
J value of cell which determined DTVF

30

[l

=
{ M3y

.. I ﬂm




oy
s

®

< (R .
s

e

AFWL-TR-66-108, Vol II

Table 1

STORAGE LOCATIONS AND DEFINITIONS OF VARIABLES

Variable name

1U
Ju
DTVF
DTUF
EIl *

X(1)
FLEFT (I)
UL (1)
YAMC (1)

GAMC (I)
PL (I)
PR (I)
SIGC (I)

THETA (I)
Y (I)

AIX (I)
AMX (I)
DX (I)
DY (I)
P (I)
PIDTS

Loc

146
147

148

149
150

152

205

205

305

405
405
405
505

605
1806

1907
3109
4315
4367
4472
5674

USE:) IN HECTIC (Continued)

Definition
I value of cell which determined DTUF
J value of cell which determined DTUF-
Axial free surface velocity time control

Radial free surface velocity time control

Constant used to compute laser absorp-
tion coefficient

Radial cocrdinate, measured to outer
boundary of cell

Radial momentum flux across left
boundary in PH2

Weighted velocity on left boundary of
cell in PHI

Axial momentum fiux across left boundary
in PH2

Mass flux across left boundary in PH2
Pressure on left side of cell in PHI1
Temporary storage in INPUT and EDIT

Total specific energy flux across left
boundary in PH2

Cell temperature

Axial coordirate, measured to upper
boundary of cell

Specific internal energy of cell
Mass in cell

Radial cell width

Axial cell width

Cell pressure

Working storage in PH! and PH2
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7

Table I

STORAGE LOCATIONS AND DEFINITIONS OF VARIABLES
USED IN HECTIC (Continued)

Variable name Loc
PRR 5676
RC 5933
RHQ (I) 5935
RR 7136
SIG 7137
TAU (I) 7190
TAUDTS 7242
U (1) 7244
URR 8445
UT 8446
uu 8447
UVMAX 8450
V(1) 8451
VABOVE 9651
VBL® 9652
VEL 9653
w2 () 9660
WS 9761
WSA 9762
WSB 9763.
I 9774
IWSA * 9779
IWSB * 9780

Definition
Average of cel) pressuce and pressure in
zone on the right
X coordinate of cell center
Cell density

X coordinate of center of cell on the
right

Working storage in CDT

Area of ring I: ﬂ(xi.HZ - xiz)

TAU (I) * DT in PHI1

X-component of cell velocity

Weighted average of cell velocity U(I)
and celi on right

Recycle variable in PH1 (-1, 0, or +1)
New At for recycling in PH1

(Max. Uor V)/(Min,Ax or Ay) in CDT
Y- component of cell velocity

Velocity V in cell above

Velocity V in cell below

Tagin PHI1 to note pass number

Laser radiation flux arriving at
solid-vapor interface

Working storage

Working storage

Working storage

Radial index

Generator input: laltt card if = +1

Generator input: x, Ax data if 0; Y,2Ay
data if 1
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